National Curriculum objectives

Year 3	Year 4	Year 5	Year 6
Addition \& Subtraction Add and subtract numbers mentally, including: a three-digit number and 1 s a three-digit number and 10s a three-digit number and 100s Add and subtract numbers with up to 3 digits, using formal written methods of columnar addition and subtraction Estimate the answer to a calculation and use inverse operations to check answers Solve problems, including missing number problems, using number facts, place value, and more complex addition and subtraction Multiplication \& Division Recall and use multiplication and division facts for the 3,4 and 8 multiplication tables Write and calculate mathematical statements for multiplication and	Addition \& Subtraction Add and subtract numbers with up to 4 digits using the formal written methods of columnar addition and subtraction where appropriate Estimate and use inverse operations to check answers to a calculation Solve addition and subtraction twostep problems in contexts, deciding which operations and methods to use and why Multiplication \& Division Recall multiplication and division facts for multiplication tables up to 12×12 Use place value, known and derived facts to multiply and divide mentally, including: multiplying by 0 and 1 ; dividing by 1 ; multiplying together 3 numbers Recognise and use factor pairs and commutativity in mental calculations	Addition \& Subtraction Add and subtract whole numbers with more than 4 digits, including using formal written methods (columnar addition and subtraction) Add and subtract numbers mentally with increasingly large numbers Use rounding to check answers to calculations and determine, in the context of a problem, levels of accuracy Solve addition and subtraction multistep problems in contexts, deciding which operations and methods to use and why Multiplication \& Division Identify multiples and factors, including finding all factor pairs of a number, and common factors of 2 numbers Multiply numbers up to 4 digits by a one- or two-digit number using a formal written method, including long	Addition, Subtraction, Multiplication \& Division Multiply multi-digit numbers up to 4 digits by a two-digit whole number using the formal written method of long multiplication Divide numbers up to 4 digits by a two-digit whole number using the formal written method of long division, and interpret remainders as whole number remainders, fractions, or by rounding, as appropriate for the context Divide numbers up to 4 digits by a two-digit number using the formal written method of short division where appropriate, interpreting remainders according to the context Perform mental calculations, including with mixed operations and large numbers Use their knowledge of the order of operations to carry out calculations

Page 1 of $\mathbf{2 0}$

Polehampton C. of E. Junior School - Calculations Policy

division using the multiplication tables that they know, including for two-digit numbers times one-digit numbers, using mental and progressing to formal written methods Solve problems, including missing number problems, involving multiplication and division, including positive integer scaling problems and correspondence problems in which n objects are connected to m objects	Multiply two-digit and three-digit numbers by a one-digit number using formal written layout Solve problems involving multiplying and adding, including using the distributive law to multiply two-digit numbers by 1 digit, integer scaling problems and harder correspondence problems such as n objects are connected to mobjects	multiplication for two-digit numbers Multiply and divide numbers mentally, drawing upon known facts Divide numbers up to 4 digits by a one-digit number using the formal written method of short division and interpret remainders appropriately for the context Multiply and divide whole numbers and those involving decimals by 10, 100 and 1,000 Solve problems involving multiplication and division, including using their knowledge of factors and multiples, squares and cubes Solve problems involving addition, subtraction, multiplication and division and a combination of these, including understanding the meaning of the equals sign Solve problems involving multiplication and division, including scaling by simple fractions and problems involving simple rates.	involving the 4 operations Solve addition and subtraction multistep problems in contexts, deciding which operations and methods to use and why Solve problems involving addition, subtraction, multiplication and division Use estimation to check answers to calculations and determine, in the context of a problem, an appropriate degree of accuracy

The five concepts of Mastery

1. Coherence

Connecting new ideas to concepts that have already been understood, and ensuring that, once understood and mastered, new ideas are used again in next steps of learning. This is successful when learning is: broken into small, carefully sequenced steps, linked to prior learning and each new step is focussed on in depth so that learning is sustainable.

2. Representation \& structure

Representations used in lessons expose the mathematical structure being taught. The more representations taught, the more influence this has on a child's ability to transform, compare and combine numbers when calculating.

3. Variation

Variation within teaching highlights essential features of a concept or idea through varying the non-essential features. Questions such as: 'What is the same?' 'What is different?' encourage the children to identify key structures that must be maintained to understand and apply the concept.

4. Fluency

Fluency demands more of learners than memorisation of a single procedure or collection of facts. It encompasses a mixture of efficiency, accuracy and flexibility. Quick and efficient recall of facts and procedures is important in order for learners to keep track of problems, think strategically and solve problems. It also demands the flexibility to move between different contexts and representations of mathematics, to recognise relationships and make connections and to make appropriate choices from a whole toolkit of methods, strategies and approaches.

5. Mathematical thinking

If taught ideas are to be understood deeply, they must not merely be passively received but must be worked on by the child: thought about, reasoned with and discussed with others. By explaining, convincing, drawing diagrams and using manipulatives, the children develop a deep and sustainable style of learning, which will lend itself well as children are faced with more challenging, abstract concepts.

Representations and Resources

Place value counters/charts	Cubes	Bar models	Part-Whole models
Arrow cards	Tens frames	Arrays	Numicon
Dienes	Number lines	Counting Sticks	Counters

Page 4 of 20

Polehampton C. of E. Junior School - Calculations Policy

	Concrete	Pictorial	Abstract
Year 3 Addition add total plus sum more altogether column addition regroup	In examples of addition without regrouping, children are required to show their understanding of presenting their numbers in a column method. Once they have done this, the children will start adding the ones, followed by the tens etc. In these scenarios, the children do not need to regroup any numbers. Once they are confident with this concept, the children are then moved on to the concept of regrouping.	Addition without regrouping Here, a part-whole model is being used as a pictorial tool to show that the two smaller bubbles are equal to the larger, central bubble. Number lines can also be used to help add on smaller amounts. They are also used to help the children to estimate an answer, by rounding and	The knowledge gained through representation can now be used in a column method structure; where numbers are used to represent the place value composition in a compact way. Step 1: Add the numbers in the ones column.

Polehampton C. of E. Junior School - Calculations Policy

Polehampton C. of E. Junior School - Calculations Policy

Polehampton C. of E. Junior School - Calculations Policy

Page 8 of $\mathbf{2 0}$

Polehampton C. of E. Junior School - Calculations Policy
Division
divide by
fact families
share equally
group equally
tens, is equal to 72 . The ten ones have
been regrouped to form a seventh ten.

Polehampton C. of E. Junior School - Calculations Policy

Page 10 of $\mathbf{2 0}$

Polehampton C. of E. Junior School - Calculations Policy

Polehampton C. of E. Junior School - Calculations Policy

Multiplication multiply groups of lots of times factor multiple product	When solving subtraction with exchange questions in year 4, the children may find that they are faced with a number of exchanges within the same problem. To support this, the children look back at the place value and how to exchange numbers, particularly now that they may need to exchange a thousand into ten hundreds. In year 4, the children learn how to multiply a 3 -digit number by a 1 -digit number, using the expanded column method. By using this method, the composition of the numbers being multiplied is exposed and this, in turn, consolidates the children's understanding of place value within the calculation. The children are required to start by multiplying the ones value, through to the hundreds, by adding each product to a new row. Once the products have been found, their total can be calculated.	Using arrows on pictorial representations can remind the children of the physical movement of one thousand into ten hundreds, rather than 'crossing out a digit and taking one away'. Multiplication A bar model is used in this context to show that the product can be represented in four equal parts.	Once confident with the composition of the number, the children can show their calculations as part of a column subtraction. Where they understand that the crossing out of numbers is actually the exchange between place value columns. Step 1: The ones are multiplied, 5×4. Step 2: The tens value is multiplied, $5 x$ 30. Step 3: The sum of the products is calculated. When writing in the answers, the children are required to show their understanding that the ' 3 ' is actually equal to 3 tens.

Polehampton C. of E. Junior School - Calculations Policy

Page 13 of 20

Polehampton C. of E. Junior School - Calculations Policy

Page 14 of 20

Polehampton C. of E. Junior School - Calculations Policy

Page 15 of 20

Polehampton C. of E. Junior School - Calculations Policy

	Once again, the children will learn how to exchange numbers that cannot be divided equally as remainders. This is then developed, once again, into using the busstop method.	As in year 4, however, 4- digit numbers will now be used, and the children will be expected to represent their remainders with an ' r ' but also develop this into representing their remainders as fractions.	4 5 5 r 3 2 $2^{2} 7$ ${ }^{2} 8$ In this example, the remainder is being indicated using the letter ' r ', however, in this instance, the remainder could also be represented as the fraction, $3 / 5$.
Year 6 Addition			
Add Total Make Plus Sum More Altogether Column addition Estimate Inverse operation Subtraction difference subtract less minus take away Column subtraction Exchange		Subtraction	$\begin{array}{r} 946714 \\ +326459 \\ \hline 1,273,173 \\ \hline 111 \end{array}$

Polehampton C. of E. Junior School - Calculations Policy

Page 17 of 20

Polehampton C. of E. Junior School - Calculations Policy

Polehampton C. of E. Junior School - Calculations Policy

Polehampton C. of E. Junior School - Calculations Policy

Order of operations	B	Brackets	$10 \times(4+2)=10 \times 6=60$
	0	Order	$5+2^{2}=5+4=9$
	D	Division	$10+6 \div 2=10+3=13$
	M	Multiplication	$10-4 \times 2=10-8=2$
	A	Addition	$10 \times 4+7=40+7=47$
	S	Subtraction	$10 \div 2-3=5-3=2$

